Data collection: CAD-4 (Enraf-Nonius, 1977). Cell refinement: CAD-4 (Enraf-Nonius, 1977). Data reduction: MolEN (Fair, 1990). Program(s) used to refine structure: LSFM MolEN (Fair, 1990). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: CIF MolEN (Fair, 1990).

Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters (\AA^{2})

$U_{\text {eq }}=\frac{1}{3} \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	\boldsymbol{x}	\boldsymbol{y}	z	$U_{\text {eq }}$
S1	$0.6485(2)$	$0.3457(1)$	$0.3247(2)$	$0.0671(7)$
S2	$0.8110(1)$	$0.5792(1)$	$0.4708(1)$	$0.0522(6)$
S3	$0.7446(2)$	$0.4430(1)$	$0.5319(1)$	$0.0534(6)$
S4	$0.5836(2)$	$0.6768(1)$	$0.3840(1)$	$0.0511(5)$
S5	$0.0799(2)$	$0.7979(1)$	$0.1993(2)$	$0.0614(6)$
S6	$0.2427(2)$	$1.0310(1)$	$0.2201(2)$	$0.0787(7)$
S7	$0.3074(2)$	$0.8938(1)$	$0.3501(2)$	$0.0640(7)$
S8	$0.1483(2)$	$1.1271(1)$	$0.3294(2)$	$0.0744(7)$

Table 2. Anisotropic thermal parameters $\left(\AA^{2}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
S1	$0.0797(6)$	$0.0562(8)$	$0.0675(6)$	$0.0211(6)$	$0.0413(4)$	$0.0063(6)$
S2	$0.0365(4)$	$0.0697(8)$	$0.0559(5)$	$-0.0037(5)$	$0.0239(3)$	$0.0058(6)$
S3	$0.0530(5)$	$0.0669(9)$	$0.0430(4)$	$0.0066(6)$	$0.0249(3)$	$0.0133(5)$
S4	$0.0536(4)$	$0.0487(7)$	$0.0511(5)$	$-0.0067(5)$	$0.0317(3)$	$-0.0092(5)$
S5	$0.0754(6)$	$0.0472(7)$	$0.0651(5)$	$0.0031(6)$	$0.0438(4)$	$-0.0095(5)$
S6	$0.0760(5)$	$0.088(1)$	$0.0731(5)$	$-0.0369(6)$	$0.0533(3)$	$-0.0208(6)$
S7	$0.0421(5)$	$0.093(1)$	$0.0674(7)$	$0.0069(7)$	$0.0246(4)$	$-0.0128(7)$
S8	$0.1215(8)$	$0.0496(8)$	$0.0682(6)$	$-0.0331(7)$	$0.0571(5)$	$-0.0219(6)$

Table 3. Geometric parameters $\left(\AA{ }^{\circ},{ }^{\circ}\right)$

S1-S1	2.060 (2)	S5-S5	2.039 (3)
S1-S3	2.043 (2)	S5-S7	2.035 (2)
S2-S3	2.040 (2)	S6-S7	2.051 (2)
S2-S4	2.049 (2)	S6-S8	2.040 (3)
S4-S4	2.037 (1)	S8-S8	2.058 (2)
S1-S1-S3	107.9 (1)	S5-S5-S7	107.38 (9)
S3-S2-S4	107.78 (9)	S7-S6-S8	107.1 (1)
S1-S3-S2	107.75 (9)	S5-S7-S6	107.71 (7)
S2-S4-S4	108.62 (9)	S6-S8-S8	107.95 (8)
S1'-S1-S3-S2	-99.1 (1)	S5'-S5-S7-S6	-99.9 (1)
S3-S1-S1'-S3 ${ }^{\prime}$	98.5 (1)	S7-S5-S5'-S7 ${ }^{\prime}$	99.8 (1)
S4-S2-S3-S1	99.2 (1)	S8-S6-S7-S5	99.2 (1)
S3-S2-S4-S4 ${ }^{\prime}$	-98.4 (1)	S7-S6-S8-S8'	-98.6(1)
$\mathbf{S 2}$-S4-S4'-S2'	98.0 (1)	S6-S8-S8 ${ }^{\prime}$ - $\mathbf{S 6}^{\prime}$	99.5 (1)

Backgrounds were obtained from analysis of the scan profile (Blessing, Coppens \& Becker, 1974). Starting coordinates and atom numbering were taken from Watanabe (1974).

We thank the College of Arts and Sciences of the University of Toledo for support of the X-ray facility.

[^0]
References

Blessing, R. H., Coppens, P. \& Becker, P. (1974). J. Appl. Cryst. 7, 488492.

Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.

Fair, C. K. (1990). MolEN. An interactive intelligent system for crystal structure analysis. Enraf-Nonius, Delft, The Netherlands.
Goldsmith, L. M. \& Strouse, C. E. (1977). J. Am. Chem. Soc. 99, 75807589.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rettig, S. J. \& Trotter, J. (1987). Acta Cryst. C43, 2260-2262.
Templeton, L. K., Templeton, D. H. \& Zalkin, A. (1976). Inorg. Chem. 15, 1999-2001.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Watanabe, Y. (1974). Acta Cryst. B30, 1396-1401.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1993). C49, 126-129

Synthesis and Structures of the Quaternary Sulfides $\mathbf{K}_{0.5} \mathbf{Z r}_{0.5} \mathbf{I n}_{0.5} \mathbf{S}_{2}$ and $\mathbf{K}_{0.5} \mathbf{C r}_{0.5} \mathbf{S n}_{0.5} \mathbf{S}_{\mathbf{2}}$
Ping Wu and James A. Ibers
Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA

(Received 8 May 1992; accepted 3 August 1992)

Abstract

The new quaternary compounds $\mathrm{K}_{0.5} \mathrm{Zr}_{0.5} \mathrm{In}_{0.5} \mathrm{~S}_{2}$ and $\mathrm{K}_{0.5} \mathrm{Cr}_{0.5} \mathrm{Sn}_{0.5} \mathrm{~S}_{2}$ have been synthesized. $\mathrm{K}_{0.5} \mathrm{Zr}_{0.5} \mathrm{In}_{0.5} \mathrm{~S}_{2}$ has a hexagonal structure and $\mathrm{K}_{0.5} \mathrm{Cr}_{0.5} \mathrm{Sn}_{0.5} \mathrm{~S}_{2}$ has both hexagonal and trigonal phases. The two compounds have similar structures to that of CdI_{2}, with double closepacked sulfur layers and transition-metal and main-group atoms disordered over the octahedral sites inside the double layers. These layers are separated by potassium ions that occupy trigonal prismatic sites.

Comment

Two new quaternary sulfides, $\mathrm{K}_{0.5} \mathrm{Zr}_{0.5} \mathrm{In}_{0.5} \mathrm{~S}_{2}$ and $\mathrm{K}_{0.5} \mathrm{Cr}_{0.5} \mathrm{Sn}_{0.5} \mathrm{~S}_{2}$, have been synthesized as part of a continuing effort to explore the synthesis and properties of new complex chalcogenides (Lu \& Ibers, 1991a,b; Mansuetto, Keane \& Ibers, 1992; Wu \& Ibers, 1992). Trichet \& Rouxel (1977) studied the analogous system $\mathrm{Na}_{x} \mathrm{Zr}_{1-x} \mathrm{In}_{x} \mathrm{~S}_{2}$ with X-ray powder diffraction techniques and complex impedance measurements. Three different phases, all good ionic conductors, were found in the composition range $0<x<1$. The intercalated compounds $A_{x} \mathrm{ZrS}_{2}$ (Cousseau, Trichet \& Rouxel, 1973; Rouxel, Cousseau \& Trichet, 1971) and $A_{x} \mathrm{SnS}_{2}$ (Le Blanc, Danot \& Rouxel, 1969) ($A=\mathrm{Li}, \mathrm{Na}, \mathrm{K}$) show similar structural features. Their structures have generally been postulated from cell constants obtained from powder samples.
(C) 1993 International Union of Crystallography

The present samples were prepared by the reaction of $\mathrm{K}_{2} \mathrm{~S}_{5}$ [prepared from elemental K (AESAR, 99%) and S (Alfa, 99.9995\%)] with Zr (Johnson Matthey, 99.9\%) and In powder (Johnson Matthey, 99.999\%) or Cr and Sn powder (both Johnson Matthey, 99.999\%) and elemental S in quartz tubes. Each reaction was carried out at 1273 K for 6 days; the tubes were then cooled at a rate of $4 \mathrm{~K} \mathrm{~h}^{-1}$. Semiquantitative EDAX analysis revealed the presence of all four elements in a ratio of approximately 1:1:1:4. Xray diffraction powder patterns of ground bulk samples were obtained with a Philips X-ray diffractometer. These showed that $\mathrm{K}_{0.5} \mathrm{Zr}_{0.5} \mathrm{In}_{0.5} \mathrm{~S}_{2}$ has only a hexagonal phase, whereas both hexagonal and trigonal phases were present in the $\mathrm{K}_{0.5} \mathrm{Cr}_{0.5} \mathrm{Sn}_{0.5} \mathrm{~S}_{2}$ samples as prepared. Complex impedance measurements were made on pressed pellets of these compounds. $\mathrm{K}_{0.5} \mathrm{Zr}_{0.5} \mathrm{In}_{0.5} \mathrm{~S}_{2}$ has an ionic conductivity of $0.5(2) \mathrm{M} \Omega^{-1} \mathrm{~cm}^{-1}$ at room temperature. [Trichet \& Rouxel (1977) reported a higher conductivity $\left(10^{2} \mathrm{M} \Omega^{-1} \mathrm{~cm}^{-1}\right.$ at 300 K) for the $x=0.50$ phase of the $\mathrm{Na}_{x} \mathrm{Zr}_{1-x} \mathrm{In}_{\mathrm{x}} \mathrm{S}_{2}$ system, but lower conductivities (10^{-2} to $10^{-1} \mathrm{M} \Omega^{-1} \mathrm{~cm}^{-1}$) for the $x=0.35$ and $x=0.80$ phases.] The conductivity of the bulk $\mathrm{K}_{0.5} \mathrm{Cr}_{0.5} \mathrm{Sn}_{0.5} \mathrm{~S}_{2}$ samples containing both phases was below the instrumental limit (estimated at $0.01 \mathrm{M} \Omega^{-1} \mathrm{~cm}^{-1}$).

From single-crystal data, it was found that the hexagonal and trigonal phases have closely related layered structures that can be derived from that of CdI_{2}. There are double close-packed layers of S atoms. The metal atoms $(\mathrm{Zr} / \mathrm{In}$ or $\mathrm{Cr} / \mathrm{Sn}$) are disordered and occupy all the octahedral sites between the double sulfur layers. Bond lengths compare well with literature values: for example, the ($\mathrm{Zr} / \mathrm{In}$) - S bond length is 2.591 (1) \AA compared with average lengths of 2.58(1) \AA for $\mathrm{Zr}-\mathrm{S}$ in KCuZrS_{3} (Mansuetto, Keane \& Ibers, 1992) and $2.65 \AA$ for $\mathrm{In}-\mathrm{S}$ in KInS \mathbf{S}_{2}-III (Range \& Mahlberg, 1975), and the (Cr/Sn)-S bond length is 2.481 (1) \AA compared with average lengths of 2.42(4) \AA for $\mathrm{Cr}-\mathrm{S}$ in CuCrS_{2} (Le Nagard, Collin

Fig. 1. View of the $\mathrm{K}_{0.5} \mathrm{Zt}_{0.5} \mathrm{In}_{0.5} \mathrm{~S}_{2}$ structure down the b axis.
\& Gorochov, 1979) and 2.56(3) \AA for $\mathrm{Sn}-\mathrm{S}$ (tetravalent Sn) in $\mathrm{Sn}_{2} \mathrm{~S}_{3}$ (Kniep, Mootz, Severin \& Wunderlich, 1982). In both structures, the $S-M-S$ bond angles are $\sim 92^{\circ}$ and the K sites are coordinated by six S atoms in a trigonal prismatic arrangement. In $\mathrm{K}_{0.5} \mathrm{Zr}_{0.5} \mathrm{In}_{0.5} \mathrm{~S}_{2}$, the K cations are disordered over two sites and in both structures the K cations exhibit large thermal motion in the $a b$ plane, consistent with the high ionic conductivity in $\mathrm{K}_{0.5} \mathrm{Zr}_{0.5} \mathrm{In}_{0.5} \mathrm{~S}_{2}$. The two structures differ in how the layers stack; in the hexagonal $\mathrm{K}_{0.5} \mathrm{Zr}_{0.5} \mathrm{In}_{0.5} \mathrm{~S}_{2}$ structure the close-packed sulfur double layers stack with an $A B A B$... sequence (Fig. 1) while in the trigonal $\mathrm{K}_{0.5} \mathrm{Cr}_{0.5} \mathrm{Sn}_{0.5} \mathrm{~S}_{2}$ they stack with an $A B C A B C$... sequence (Fig. 2).

Fig. 2. View of the $\mathrm{K}_{0.5} \mathrm{Cr}_{0.5} \mathrm{Sn}_{0.5} \mathrm{~S}_{2}$ structure down the b axis.

Experimental

$\mathbf{K}_{0.5} \mathbf{Z r}_{0.5} \mathbf{I n}_{0.5} \mathbf{S}_{2}$
Crystal data
$M_{r}=186.70$
Hexagonal
$P 6_{3} / \mathrm{mmc}$
$a=3.721(1) \AA \therefore \quad \theta=18.5-19.5^{\circ}$
$c=16.639(7) \AA$
$V=199.5(1) \AA^{3}$
$Z=2$
$D_{x}=3.11 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Data collection
Picker diffractometer
$\theta-2 \theta$ scans
Absorption correction: analytical $T_{\min }=0.601, T_{\text {max }}=$ 0.842

3438 measured reflections
194 independent reflections 194 observed reflections
$R_{\text {int }}=0.095$
$\lambda=0.7093 \AA$
Cell parameters from 54 reflections
$\mu=5.56 \mathrm{~mm}^{-1}$
$T=115 \mathrm{~K}$
Plate
$0.16 \times 0.09 \times 0.03 \mathrm{~mm}$
Red
$\theta_{\text {max }}=35.0^{\circ}$
$h=-6 \rightarrow 6$
$k=-6 \rightarrow 6$
$l=-26 \rightarrow 26$
6 standard reflections monitored every 100 reflections intensity variation: none

Refinement

Refinement on F^{2}
$w R=0.111$
$S=2.30$
194 reflections
12 parameters
$w=1 /\left[\sigma^{2}\left(F^{2}\right)+\left(0.04 F^{2}\right)^{2}\right]$
$(\Delta / \sigma)_{\text {max }}=0.119$
$\Delta \rho_{\max }=7.7 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-3.0 \mathrm{e}^{-3}$
Data collection: PCPS/Picker. Cell refinement: CELREF, local program. Data reduction: NUPICK, local program. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: $N U C L S$, local program. Molecular graphics. SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: DATABL, local program.

The stoichiometry of the material was constrained to be $\mathrm{K}_{0.5} \mathrm{Zr}_{0.5} \mathrm{In}_{0.5} \mathrm{~S}_{2}$ on the basis of the EDAX analysis and the homogeneity of the sample.

$\mathbf{K}_{0.5} \mathbf{C r}_{0.5} \mathbf{S n}_{0.5} \mathbf{S}_{2}$

Crystal data
$M_{r}=169.02$
Trigonal
$R \overline{3} m$
$a=3.5786$ (5) \AA
$c=24.832(5) \AA$
$V=275.4$ (1) \AA^{3}
$Z=3$
$D_{x}=3.06 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\lambda=0.7093 \AA$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: analytical $T_{\min }=0.645, \quad T_{\max }=$ 0.962

2191 measured reflections 259 independent reflections

Cell parameters from 24 reflections
$\theta=15.5-20^{\circ}$
$\mu=6.41 \mathrm{~mm}^{-1}$
$T=115 \mathrm{~K}$
Plate
$0.13 \times 0.12 \times 0.006 \mathrm{~mm}$ Black

259 observed reflections
$R_{\text {int }}=0.091$
$\theta_{\text {max }}=39.5^{\circ}$
$h=-6 \rightarrow 6$
$k=-6 \rightarrow 6$
$l=-43 \rightarrow 43$
6 standard reflections frequency: 180 min intensity variation: none

Refinement

Refinement on \boldsymbol{F}^{2}
$w R=0.100$
$S=1.91$
259 reflections
9 parameters
$w=1 /\left[\sigma^{2}\left(F^{2}\right)+\left(0.04 F^{2}\right)^{2}\right]$

$$
(\Delta / \sigma)_{\max }=0.088
$$

$\Delta \rho_{\max }=2.4 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=0.7 \mathrm{e}^{-3}$
Atomic scattering factors from Cromer (1974) and Cromer \& Waber (1974)

Data collection: Enraf-Nonius CAD-4. Cell refinement: EnrafNonius CAD-4. Data reduction: CADPROC, local program. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: NUCLS, local program. Molecular graphics: SHELXTL/PC (Sheldrick, 1990). Software used to prepare material for publication: DATABL, local program.

The stoichiometry of the material was constrained to be $\mathrm{K}_{0.5} \mathrm{Cr}_{0.5} \mathrm{Sn}_{0.5} \mathrm{~S}_{2}$ on the basis of the EDAX analysis and the homogeneity of the sample.

Table 1. Fractional atomic coordinates, occupancies and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for $\mathrm{K}_{0.5} \mathrm{Zr}_{0.5} \mathrm{In}_{0.5} \mathrm{~S}_{2}$

$$
B_{\mathrm{eq}}=\frac{8 \pi^{2}}{3} \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

	Occupancy	x	y	z	$B_{\text {eq }}$
Zr/ln	1.0	0	0	0	$0.90(2)$
K1	$0.35(2)$	$1 / 3$	$2 / 3$	0.25	$6.7(5)$
K2	0.15	0	0	0.25	$2.8(4)$
S	1.0	$2 / 3$	$1 / 3$	$0.4130(1)$	$0.96(2)$

Table 2. Geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for $\mathrm{K}_{0.5} \mathrm{Zr}_{0.5} \mathrm{In}_{0.5} \mathbf{S}_{2}$

$\mathrm{Zr} / \mathrm{ln}-\mathrm{S}^{\text {i }}$	2.591 (1)	K2-S	3.459 (2)
K1-S	3.459 (2)		
$\mathrm{s}^{\mathrm{i}-\mathrm{Zr} / \mathrm{n}-\mathrm{s}^{\mathrm{S}} \mathrm{jym}}$	$\begin{aligned} & 91.79 \text { (5) } \\ & \text { (i) }-x, \end{aligned}$	- 1 .	

Table 3. Fractional atomic coordinates, occupancies and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for

$$
\begin{gathered}
\mathrm{K}_{0.5} \mathrm{Cr}_{0.5} \mathrm{Sn}_{0.5} \mathrm{~S}_{2} \\
B_{\mathrm{eq}}=\frac{8 \pi^{2}}{3} \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathrm{a}_{j}
\end{gathered}
$$

	Occupancy	x	y		$B_{\text {eq }}$
$\mathrm{Cr} / \mathrm{Sn}$	1.0	0	0	0	$0.51(1)$
K	0.25	0	0	$0.16696(34)$	$7.4(4)$
S	1.0	0	0	$0.388637(47)$	$0.73(2)$

Table 4. Geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$ for $\mathrm{K}_{0.5} \mathrm{Cr}_{0.5} \mathrm{Sn}_{0.5} \mathrm{~S}_{2}$

Use was made of the X-ray and scanning electron microscope facilities supported by the National Science Foundation through the Northwestern University Materials Research Center, Grant No. DMR 88-21571. This research was supported by the National Science Foundation through Grant DMR-8809854 (Science and Technology Center for Superconductivity).

Lists of structure amplitudes and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55394 (6 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: ST1015]

References

Cousseau, J., Trichet, L. \& Rouxel, J. (1973). Bull. Soc. Chim. Fr. pp. 872-878.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1, pp. 149-150. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Liberman, D. A. (1981). Acta Cryst. A37, 267-268.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2A, pp. 149-150. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Kniep, R., Mootz, D., Severin, U. \& Wunderlich, H. (1982). Acta Cryst. B38, 2022-2023.
Le Blanc, A., Danot, M. \& Rouxel; J. (1969). Bull. Soc. Chim. Fr. pp. 87-90.
Le Nagard, N., Collin, G. \& Gorochov, O. (1979). Mater. Res. Bull. 14, 1411-1417.
Lu, Y.-J. \& Ibers, J. A. (1991a). Inorg. Chem. 30, 3317-3320.
Lu, Y.-J. \& Ibers, J. A. (1991b). J. Solid State Chem. 94, 381-385.
Mansuetto, M. F., Keane, P. M. \& Ibers, J. A. (1992). In preparation.
Range, K.-J. \& Mahlberg, G. (1975). Z. Naturforsch. Teil B, 30, 81-87.
Rouxel, J., Cousseau, J. \& Trichet, L. (1971). C. R. Acad. Sci. Sér. C, 273, 243-246.
Sheldrick, G. M. (1985). SHELXS86. In Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford Univ. Press.
Sheldrick, G. M. (1990). SHELXTL/PC. Version 4.1. An integrated system for solving, refining and displaying crystal structures from diffraction data. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
Trichet, L. \& Rouxel, J. (1977). Mater. Res. Bull. 12, 345-354.
Wu, P. \& Ibers, J. A. (1992). In preparation.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1993). C49, 129-130

catena-[Cd $\left\{\mu-\mathbf{S}_{\left.\left.\left(\mathbf{C H}_{2}\right)_{3} \mathbf{N H M e}_{2}\right\} \mathrm{Br}_{2}\right]}\right.$

William Clegg

Department of Chemistry, The University, Newcastle upon Tyne NE1 7RU, England

Isidre Casals and Pllar González-Duarte
Departament de Quimica, Universitat Autònoma de
Barcelona, 08193 Bellaterra, Barcelona, Spain Barcelona, 08193 Bellaterra, Barcelona, Spain
(Received 18 June 1992; accepted 14 July 1992)

Abstract

The title complex, catena-poly[dibromocadmium- μ-3-dimethylamino-1-propanethiolato], contains polymeric chains of alternating Cd and S atoms with $\mathrm{Cd}-\mathrm{S}$ bond lengths of $2.515(3)$ and $2.520(3) \AA$. Distorted tetrahedral coordination of Cd [with a wide $\mathrm{S}-\mathrm{Cd}-\mathrm{S}$ angle of $126.95(5)^{\circ}$] is completed by two Br ligands [$\mathrm{Cd}-\mathrm{Br}$ $2.5834(15)$ and $2.6400(14) \AA$ A. The longer $\mathrm{Cd}-\mathrm{Br}$ bond is to a Br atom involved in inter-chain hydrogen bonding with the ammonium group of a mercaptoamine ligand of an adjacent chain, to give two-dimensional sheets.

Comment

Interest in cadmium-thiolate coordination chemistry centres mainly on structural and bioinorganic objectives (Dance, 1986; Blower \& Dilworth, 1987). Cadmiumcysteine coordination in several metallothioneins has
been established by solution ${ }^{113} \mathrm{Cd}$ NMR studies and by X-ray diffraction measurements (Robbins, McRee, Williamson, Collett, Xuong, Furey, Wang \& Stout, 1991). As part of our extensive studies of the coordination chemistry of mercaptoamine ligands (Capdevila, Clegg, González-Duarte, Harris, Mira, Sola \& Taylor, 1992, and references therein), and with the specific aim of correlating ${ }^{113} \mathrm{Cd}$ solid-state NMR data with the coordination of Cd in different environments, we have determined the structure of catena-[Cd $\left\{\mu-\mathrm{S}_{\left.\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHMe}_{2}\right\} \mathrm{Br}_{2}\right] \text {. }}\right.$

The complex (Fig. 1) is isostructural with the corresponding chloride (Casals, González-Duarte, Sola, FontBardia, Solans \& Solans, 1987) and with the analogous mercury chloride complex (Casals, González-Duarte, Sola, Miravitlles \& Molins, 1988). It consists of polymeric chains of alternating Cd and S atoms. The mercaptoamine ligands are doubly bridging through the S atom only, the protonated amine group playing no part in the metal coordination. The tetrahedral coordination of Cd by two thiolate and two Br ligands shows slightly more distortion than in the corresponding chloride, but less than in the analogous Hg complex; the correlation between such geometrical variations and solid-state ${ }^{113} \mathrm{Cd}$ NMR parameters will be the subject of a separate publication.

Fig. 1. Part of the polymeric chain structure, showing the labelling of the independent atoms.

The chains are held together in extended two-dimensional sheets by hydrogen bonding between ammonium groups and Br ligands. The $\mathrm{H} \cdots \mathrm{Br}$ and $\mathrm{N} \cdots \mathrm{Br}$ distances are 2.52(2) and 3.35(2) Å respectively, with an angle of $148(2)^{\circ}$ at the H atom (these values are calculated from the refinement results, whereby the H atom was made to ride on its N atom with a fixed bond length of $0.93 \AA$). The Br ligand involved in hydrogen bonding forms a longer bond to the Cd atom.

Previous attempts to synthesize this complex gave no pure product, but a mixture containing also the salt $\left[\left\{\mathrm{Me}_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~S}\right\}_{2}\right]\left[\mathrm{CdBr}_{4}\right]$ (Casals et al., 1987). Comparable synthetic procedures with halides of Zn, Cd and Hg , and with the 4 -mercapto-1-methylpiperidine ligand (a cyclic instead of linear γ-mercaptoamine) give dimeric [$M_{2}(\mu-S R)_{2} X_{4}$] (Bayón, Casals, Gaete, González-Duarte

[^1]
[^0]: Lists of structure factors, anisotropic thermal parameters and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55547 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: AB1021]

[^1]: © 1993 International Union of Crystallography

